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Context: Computer Vision for Autonomous Navigation

The objective of this research is to allow a mobile robot to learn autonomously the vision
tasks that are fundamental for its navigation:

Depth maps: Get a 3d map of its environment, find navigable paths, avoid obstacles...

Optical flow: Recover ego-motion (Odometry), localise moving objects,...

Semantic maps: Recognise things (Vehicles, Humans, Buildings,...) and stuffs (Road,
Sky, Forest,...)
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Context: Computer Vision for Autonomous Navigation

We consider the monocular case (one single camera). We aim to design a fully
self-supervised deep learning approach, that can be naturally extended towards continuous
learning, which supposes:

Zero annotated data

Zero pre-trained module

Adaptation and Consolidation mechanisms (out of scope here)
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Synergies between Tasks in Computer Vision

Positive interferences between different
computer vision tasks have been identified
for years, by demonstrating strong transfer
learning capacities from some neural
networks trained on a specific task, to be
retrained to perform a different task.

Taskonomy [Zamir 2018]
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Transfer: Motion (Optical Flow) to Depth (Disparity)

Here, an horizontal travelling:

Z =
f Ẋ

ẋ
, with

Z the depth

f the focal distance

Ẋ the camera velocity
(constant)

ẋ the apparent (pixelwise)
velocity (variable)
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Transfer: Shading (Normals) to Depth

Self shadowing is a strong depth cue. Without
shape prior, the sense of the normal (concavity)
is determined by a prior on light direction (right
image).

However, when the shape prior is strong,
the semantic prior dominates the lighting
prior (top-down effect, animation on the
left).
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Transfer Semantics to Depth: Occlusions

Giotto - Pentecoste
(circa 1305)
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Transfer Semantics to Depth: Object sizes

Georges Seurat -
Un après-midi à
l’̂ıle de la Grande
Jatte (1884-1886)
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Semantics, Depth and Odometry (Pose): Vanishing point and Horizon
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Self-supervised learning

Supervision of depth, motion or semantic maps assumes densely annotated data, which are
hard to obtain for real images. Self-supervision is possible using an auxiliary task, that the
model can perform itself to produce an alternate supervision signal.

Optical Flow: Photometric loss based on straightforward image warping.

Depth maps: Photometric loss based on back-projection and reprojection.

Semantic maps: No reported auxiliary task; we propose to use physical cues from
motion and depth to predict pre-semantic maps.
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Self-supervised Optical Flow: Photometric loss

Self-supervised Optical Flow is based on
photometric loss, that measures the difference
between an image and its prediction based on the
optical flow:

Lflow
photo = ∥I1 − I0→1∥,

with:
I0→1(m) = I0 (m− f0→1(m)) .
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Self-supervised Optical Flow: Limitations

Two major issues hamper the efficiency of
Photometric loss:

Occlusions: Missing pixel values!

Homogeneous zones: Small loss does not
mean small errors!

Solution: Semantic cues!
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Self-supervised Depth (1): Back-projection from first image
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Self-supervised Depth (2): Re-projection onto second image

A. Manzanera (ENSTA Paris) Computer Vision 17 / 35



Self-supervised Depth (3): Interpolation within second image
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Self-supervised Depth: Summary and formula

The photometric loss provides a self-supervision signal by comparing the observed image with
the reconstructed image from the previous view is the depth map and odometry have been
well predicted:

Ldepth,odometry
photo = ∥I1 − IRec

1 ∥

=
∑
m′

(
I1(m

′)− I0(m)
)2

, with m′ ≃
(
[K|O4] [R|t]D0(m)×K−1m

)
But: Even more problems than with optical flow:

Occlusions!

Homogeneous zones!

Moving objects!
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Self-supervised Depth: Occlusion issue
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Self-supervised Depth: Un-occlusion issue
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Self-supervised Depth: Moving objects issue
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CoopNet: Joint training of Optical Flow, Odometry and Depth

CoopNet [Hariat WACV’23]

By estimating (or predicting) the optical flow, moving objects can also be predicted by
comparing the optical flow with the rigid flow, which is the apparent velocity field under rigid
assumption scene (i.e. only due to camera motion), defined as:

[K|O4] [R|t]D0(m)×K−1m−m

A. Manzanera (ENSTA Paris) Computer Vision 24 / 35



CoopNet: Joint training of Optical Flow, Odometry and Depth

CoopNet [Hariat WACV’23]

The CoopNet network is trained based on the difference between the photometric losses from
the optical flow and from the depth networks:

∆(m) = Ldepth,odometry
photo − Lflow

photo
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Now, back to Semantics!

Depth and Optical Flow, both learned in a self supervised way, actually provide physical cues
to separate objects or surfaces (Pre-semantic maps):

CoopNet2 [Hariat CVPR’25]

The loss function for the edge map is designed to promote edges around the inflexion points
(2nd derivative of depth maps) and the orientation changes (1st derivative of the normal
maps) of the surfaces.
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Comparative results for Contours

Center column: our work [Hariat CVPR’25] compared with Lego [Yang 2018]
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Now, what about homogeneous areas?
The post-processed edge maps provide contours which are used to calculate distance
transform maps, that are combined with RGB images to add structure within the
homogeneous areas.

CoopNet2 [Hariat CVPR’25]
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Variations on Eikonal
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Comparative results for Depth maps

Our work [Hariat CVPR’25]
(last row) compared with
competitors.

column 1: thin object

column 2: moving object

column 3: large untextured
area

column 4: complex shape
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More qualitative results

[Hariat CVPR’25]
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Conclusion and Future Works

Contributions

Fully self-supervised joint learning of
Depth, Odometry, Optical Flow and
Pre-semantic Contours.

Eikonal-augmented images for
enhanced photometric loss.

Optimality results on distance
transforms.

n-d extensions of distance maps based
on random walks.

Future Works

Extension of the framework to
continuous learning.

Extension of the photometric loss to
non Lambertian models.
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