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Riparian zones

e Riparian zones are three-dimensional zones
encompassing the following attributes [1]:
¢ Hydrogeomorphic;

o Vegetational;
¢ Food-web.

e Riparian vegetation corresponds to all
vegetation units along river networks;

e They perform several functions, such as [2,3]:
¢ Natural corridors for terrestrial wildlife;
o Water purification;
¢ Reduce flood vulnerability;
o Areas of recreation.
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Monitoring riparian zones

e Regulations were created aiming to protect these areas:
¢ Forest code - Brazil;

o Law n2 33/96 from Portugal.

e In 2017, R$ 3 billion in fines in Brazil [5];

e Complexity: 16.6Mha from Brazil is covered by water
[6] and Brazil has around 6.9M agricultural units with
an average area of 80.8ha [7].

e Quickly and accurately mapping riparian zones is

necessary to guarantee that these regulations are being
respected;
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Strategies to map riparian zones

o Manually map on site;
o Remote sensing:
1. Unmanned Aerial system:
& Very-high spatial resolution;
& Most expensive option, low swath, and low spectral resolution.
2. Satellite
¢ Most affordable option, high swath, and medium spectral resolution;
o Generally it has a poor spatial resolution.

(a) Satellite data. (b) UAV data. (c) Labels.

Comparison between satellite and UAV data against labels.
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Strategy based on the synergy between UAV and Satellite

e UAVs' advantages appear to compensate for the satellites’
disadvantages, and vice versa [9].

e Why not take advantage of both?

e Satellite has great potential to cover large areas and can provide a
better spectral resolution;

e UAVs can be used to acquire very high resolution data and help
us to better define the meaning of each pixel;

2.- Translate from coordinate space to pixel position (UAV data),
extract predicted/ground truth data, calculate class membership

Y data

1 - Translate (1383,1127) 3 - dominant and class
from pixel (37.7129,48.9960) membership outputs
position to
coordinate
space
68 ~
(0.533, +
(37.7129, 48.9960, (1534,1279) 0.467,
37.713048.9958) (1aga 1127) (37.7130.48.9958)  0.000)  R:0.533, G: - o
(37.7129,48.9960) odel
(7.9) *
Inference
Class: Other
(1534127905 Proposed strategy diagram.

(37.7130,48.9958)

Example of dominant and class membership label calculation.
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e A new riparian-zones dataset that correlates UAV, Sentinel-1, and Sentinel-2 data is
proposed in this work;

e The dataset is composed of data acquired in 10 different places in Europe and South America
with a main focus on Brazil (4 site locations) covering 3.605km?;

e The dataset spans seven months, with data collected once a month;

o Classes: Water, forest and woodland, and other;

e Data sources:
o UAV: OpenAerialMap (OAM);
o Satellite: Open-Access Copernicus hub.

Location | Latitude | Longitude | UAV Date | Res. | Area | Test | Train
Croatia 43.4048 16.7895 2020-06-20 3 5.2 | 339 | 66.1
Russia (1) | 52.7210 44.3982 2017-08-17 2 11.8 | 32.1 | 67.9
Russia (2) | 54.6802 35.0805 2017-07-15 6 100.5 | 30.9 | 69.1
Ukraine 48.9939 | 37.71018 | 2020-07-30 5 41.2 | 250 | 75.0
Belarus 53.9612 27.5941 2020-06-20 3 22.0 | 13.6 | 86.4
Denmark | 54.9677 11.5607 2020-04-11 3 13.1 | 280 | 72.0
Brazil (1) | -21.6771 | -43.3120 | 2019-09.27 7 44.6 | 30.2 | 69.8
Brazil (2) | -10.9733 | -58.3108 | 2020-01-28 4 33.8 | 32.0 | 68.0
Brazil (3) | -9.5881 -60.2143 | 2020-01-27 4 41.7 | 33.2 | 66.8
Brazil (4) | -10.6224 | -58.0940 | 2020-01-28 2 46.6 | 34.6 | 65.4

Drone and Sentinel-2 details. The total UAV area is 3.605km?.

an Casagrande

Itimodal Su xel Classification of Forest Vegetation in Riparian Zi



Methods
0®000000000

Dataset - preprocessing

lusion

workflow

e Our proposal for dataset
pre-processing workflow has two
main phases:
¢ Individual preprocessing workflow;
o Combined workflow;

e UAV preprocessing workflow is
simplified:

o Reprojection (EPSG:4326);
o Area of interest (AOI) extraction;
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Dataset - Sentinel 2 preprocessing workflow

Sentinel-2 ‘

e Only images with minimal/no visible cloud cover Sl i Gl
. cloud coverage within 30
over the area of interest were used;

days

e Only Level-2A products were used in the workflow
since they provide the bottom of atmosphere
reflectance;

Radiometric correction Is the product Level-2A?

e Level-1C (L1C) top of atmosphere are corrected
using Sen2Cor toolbox from European Space
Agency, which performs:

Individual preprocessing workflow

¢ Atmospheric correction;
¢ Terrain correction;
o Cirrus correction.

Read Level-2A product

Sentinel-2 workflow.
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Dataset - Sentinel 1 preprocessing workflow

‘ Sentinel-1

Select product within 30 days

Range doppler
Terrain correction

Conversion to dB.

Sentinel-1 GRDH
Slgma0 dB

e Level-1 Ground Range Detected (GRD)
characteristics:

Precise oribt

¢ Interferometric wide mode;
¢ Descending orbit direction;
¢ Dual VV+VH polarisation.

Individual preprocessing workflow

e SNAP from the European Space Agency was used
to pre-process.

Digital elevation model

Sentinel-1 workflow.
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Dataset - Combined workflow

Raster reprojection

Y

Crop rasters

e All rasters are reprojected to EPSG:4326; Y
) ) Normalize resolution
e Rasters that have a resolution different than 10m are i
re-proj eCted , E Temporal gap filling
e Missing rasters are filled using temporal gap filling, where the <
interpolated reflectance value p; (between p; and py) is E Visual '?:gﬁ’:mg:"d%
(5
computed by: =
£ ) )
o Calculate Sentinel-2 Indices
_ (= t) = (px — pi) S
py =D ), (1)
(tk - ti) Stack GeoTIFFs - Time
series
e Assess co-registration needs based on visual inspection: v
co-registration was not necessary; Train/Test dataset division

Time series with Sentinel-1
and Sentinel 2 (D_s)

Combined workflow.
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Dataset - Combined workflow (Cntd.)

e Spectral indices calculation: NDVI, 1B, SAVI, NDWI, EVI, Raster reprojection
EVI2, GNDVI, and NDMI, |

Crop rasters

v

Normalize resolution

'

Temporal gap filling

e Finally, data is stacked and split into training and testing sets.

Visual inspection and Co-
registration

Calculate Sentinel-2 Indices

Combined workflow

Stack GeoTIFFs - Time
series

Train/Test dataset division

Brazil (3) data cube. Per month there are 20 bands: 10 Sentinel-2 (B, G, R, o . ¢ .
ime series with Sentinel-1
RedEdge at 704nm, 740nm, 783nm, and 865nm, NIR, SWIR bands at 1610nm and and Sentinel 2 (D_s)
2190nm), Sentinel-1, and 8 Spectral indices, totaling 140 bands. Combined workflow.
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Ground truth composition

e Ground truth data was composed based on UAV data;

e k-means clustering with k-means++- initialization followed by
visual inspection and manual fixing were used to compose labels;

Read input geometries
visual

s on
rspocion

‘ san e Podeion ] Swooupuraser [ Ex ‘
-

Flowchart ground truth composition algorithm.

e A small percentage of data was labeled to be used as a reference
by the clustering approach;

e Number of clusters and best vegetation index or color space band
are selected using a cartesian grid search.

Parameter Range Step.

Excess of Green (WOEBBECKE et al, 1995)
RGBVI (BENDIG et al. 2015)
Vegetation Indexes or Color Spaces Hue from HSV NA
A from CIELAB
B from CIELAB
Number of clusters 2-10 1

(c) Ouptut from semi-supervised approach.

Inputs and output - ground truth.
Flowchart ground truth composition algorithm.
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UAV and Satellite Synergy for Riparian Zone Classification

e A new approach using the combination of data acquired by UAVs and Satellite, and SegFormer
and a Deep learning based class membership (CM) classifier. Main differences:
¢ Replace labor-intensive OBIA based approach;
© Optimize NN architecture using Neural Architecture Search (NAS);
¢ SAR and Spectral indices;
¢ Temporal data.
e Inputs:
¢ 3 Bands GeoTIFF VHR UAV data and
© 20(140) Bands GeoTIFF S2/S1 data;

e Output: GeoTIFF raster describing class membership;

- ~ 7;\“1& .@;‘i

Proposed approach pipeline. D is data, M is model, | is interpretation, d is drone, and s is satellite. Adapted from Carbonneau et
al. (2020) [11].

Luan Casagrande

imodal Sub-Pixel Classification of Forest Vegetation in Riparian Zones



Methods
00000000800

Semantic Segmentation Model - SegFormer - UAV

e SegFormer (B4) consists of two main modules:
& A hierarchical transformer encoder - high and low resolution features;
<o A lightweight All Multilayer Perceptron (All-MLP) decoder to fuse these multi-level features.
e Main parameters:
Input patches (512x512 pixels);
Data augmentation was used in the training phase;
Trained using: Adam optimizer and Sparse Categorical Crossentropy loss;
LR (0.0001) with learning decay by 0.1 - patience 10 epochs;
Early stopping - 30 epochs of patience based on validation loss.

(R IR R R

L Encoder n Decoder |
f o |
Be¥ag,  Ex¥ag, ey, Ay, S¥uac Ex¥un,

dW

SegFormer structure. Extracted from Xie et al. (2021).

n Casagrande

Itimodal S ixel Classification of Forest Vegetation in Riparian Zones



Methods es lusion
00000000000 s 000 5

Class membership classifier - NAS - Satellite

e DNNs with and without convolutional layers are evaluated;
e NAS is used to design and optimize the architectures. The search spaces are parameterized by:

¢ The number of layers;
¢ The type of operation;
o The number of filters, kernel size, number of units, and/or other specific parameters.

e Regularized evolution (population 100, mutation probability 0.05, 2000 trials) is used as a
search strategy.

CNN [ DNN
Num. of Dense Layers 1-5
Num. of Neurons 8,16,32,64,128,256,512,1024,2048
Num. of Conv. Layers 1-5 NA
Depthwise Separable flag 0,1 NA
Kernel Size 1,3 NA
Num. of out channels 2,4,6,8,16,32,64 NA
Activation function ReLU, LeakyReLU, Hardswish, None
Droupout value 0,0.25,0.5,0.75
Window size 1,3,5,7,9,11 NA

Search space based on chain-structured neural networks, where NA means not applicable.
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Summary of experiments

1. Semantic segmentation - SegFormer;
2. Calibrated classifier:

¢ Model performance without temporal data;
¢ Model performance with temporal data;
¢ Ground truth as the target variable.

Calibration input SegFormer input SegFormer input GT input GT input
Temporal resolution | Without temporal data | With temporal data | Without temporal data | With temporal data
input data//model type | CNN DNN CNN DNN CNN DNN CNN DNN
Sentinel-1 2 2 14 14 - - - -
Sentinel-2 10 10 70 70 - - - -
Sentinel-1
Spectral indices 10 10 7 70 } } ) }
Sentinel 2 18 18 126 126 - - - -
Spectral indices
Sentinel-1
Sentinel-2 12 12 84 84 } B ) }
Sentinel-1
Sentinel-2 20 20 140 140 20 - 140 -
Spectral indices

Number of features per combination evaluated, where w/o means without and w/ means with.
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Semantic segmentation - SegFormer

Model has learned meaningful patterns -
almost perfect level of agreement;

Class water has the lowest loU;

Such differences between loUs per class
impact the calibrated classifier performance.

Best results: Brazil (2) and (4). Worst results:

Denmark and Brazil (3).

Class | Other | Water | Woodland and forest
TIoU 0.868 0.784 0.950
OA 95.2%
K 0.910

location | IoU - other | IoU - Water | IoU - Woodland and forest | OA (%) | kappa
Croatia 0.848 0.572 0.735 88.1 0.739
Russia (1) 0.926 0.729 0.859 94.3 0.873
Russia (2) 0.851 0.900 0.831 92.5 0.885
Ukraine 0.838 0.931 0.696 90.7 0.851
Belarus 0.937 0.904 0.890 95.8 0.917
Denmark 0.883 0.449 0.270 89.1 0.508
Brazil (1) 0.947 0.797 0.001 95.3 0.812
Brazil (2) 0.081 0.981 0.998 99.8 0.984
Brazil (3) 0.294 0.905 0.904 91.0 0.635
Brazil (4) 0.023 0.969 0.998 99.8 0.973

Class-specific loU, OA, and kappa statistic for the different locations of the dataset.

an Casagrande

Class-specific loU, OA, and kappa statistic - SegFormer model.

Itimodal Sub-Pixel Classification of Forest Vegetation in Riparian




Results
0®00000

luction

ferences

Semantic segmentation - SegFormer (Cntd.)

e Brazil (2): miss-predictions happened in the boundary
between classes;

e Denmark: major miss-predictions for classes water and
woodland and forest;

e The errors from the second case are significant enough
to impact dominant/sub-dominant classes.

() Input. (b) Output. (¢) Ground truth (d) Difference.

Denmark - evaluation area.

Luan Casagrande
Multimodal Sub-Pixel Classification of Forest Vegetation in Riparian Zones

(a) Input. (b) Qutput.

(c) Ground truth.

Brazil (2) - evaluation area.
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Without Temporal Data - Dominant class

e Our bests: CNN-based S1-S2-Sls and DNN-based

Convolutional Neural Network

S1-Sks; S1 | S2 [ S1-SIs [ S2-Ss | S1-52 | S1-52-SIs
e Our DNN and CNN architectures using only S2 OA | 8139 | 95.44 | 95.69 | 95.53 | 95.60 | 95.76
input outperform related works with statistically x| 0616 ] 0.908 | 0.914 | 0.910 | 0.913 | 0.915
significant differences - NAS impact; Deep Neural Network
' OA [72.05[ 9522 [ 95.60 [ 9537 [ 9546 [ 9553
e Our bests significantly outperform DNN-S2; S1 or x| 03840904 | 0.912 | 0.907 [ 0.909 | 0911
S1, Sls, and spatial resolution can improve OA and « statistic for evaluated combinations without

dominant class results. temporal resolution.

FURrUYA et al. (2020) CARBONNEAU et al. (2020) Our S2 Our Best
M | SVM | DT RF NB | C-1 | C-2 |CM-1|CM-2 | CM1 | CM-2 | CM1 | CM-2

OA | 90.71 | 92.69 | 93.01 | 85.86 | 94.30 | 93.88 | 93.97 | 94.10 | 95.22 | 95.44 | 95.60 | 95.76
k | 0808 | 0.854 | 0.859 | 0.724 | 0.884 | 0.877 | 0.877 | 0.880 | 0.904 | 0.908 | 0.912 | 0.915

Related works and our best OA and k statistic, where C is crispy, CM is class membership, 1 is DNN, 2 is CNN classifier, and S2
is Sentinel 2.
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e Major difference in the Belarus location: our
results are less noisy;

e Our best was the only one capable to partially
predict water body in Brazil 3;

e Denmark: Worst SS performance. Only case that
our solution was not superior.

Brazil (4)

RF- Furova et al. (2020) DNN - CARBONNEAU ¢f al. (2020)
oAk | [ c2 s oAl k c|c2 c3| oA <)
Belarus | 733 0528 | 0.660 0153 | 0603 | 804 | 0657 0715 | 0425 0691 | 854 0750 | 0748 0.642 | 0.766
Brazl (1) | 971 0818 | 0.969 0750 | 0,000 | 97.2 | 0853 0970 | 0781 0.000| 97.0 0.879 | 0976 0.819 | 0.000
Brazil () | 965 079 | 0.000 0763 | 0974 | 97.2 | 0.785 0000 | 0.802 0980 | 97.6 0.816 | 0.111 0.810 | 0.982
Brazil (4) | 985 0875 | 0.000 0854 | 0957 | 995 | 0944 0000 | 0.899 0994 | 99.8 0976 | 0.000 0.955 | 0.997
Brazil2) | 981 0906 | - 0869 (0080 | 985 [0929 - | 0890 0983| 992 0961| -  0.933|0.991
Denmark | 100.0 1,000 | 1,000 1000 | - | 1000 | 1000 1000 | 1000 - | 889 0727 | 0857 0667 | -
Croatia | 800 0615 | 0667 0667 | - | 800 | 0615 0667 | 0667 - | 100.00 1000 | 1000 1000 | -
Ukraine | 77.1 0,604 | 068 0716 | 0226 | 757 | 0599 0640 | 0.775 0254 | 820 0671 0.729 0.818 | 0.162
Russia (2) | 1000 1000 | 1000 - | - | 1000|1000 1000 | - - [10000 1000|1000 - -
Russia (1) | 673 0449 | 0350 0429 | 0615 | 673 | 0381 0500 | 0222 0638 | 745 0.504 | 0.500 0421 | 0.690

CNN-S1+52+ 585
k| a e

OA, k statistic, and loU, where C1 represents class other, C2 class
water, and C3 woodland and forest. Cells filled with dash (-) represent
that the value is not applicable.

Maps representing the dominant class: RF proposed by
Furuya et al. (2020) [10], DNN proposed by Carbonneau
et al. (2020) [11], and our best.
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Without Temporal Data - Class membership

e CNN-based model proposed by Carbonneau et al. (2020) o
[11] produced the lowest MAE for the D class; - ki L

e Our DNN-based architecture achieved the lowest MAE for oy e T Ty e 5T
the SD class when considering all pixels; (o) Our AN,

o Our models achieved the lowest MAE for D and SD classes,
showing higher potential to predict subtle changes.

-

T caminant las Eror S Dominant Claa Erer
‘ Paper CARBONNEAU et al. (2020) ‘ Our (6) Our DN,
Heterogeneous + homogeneous pixels
Metric | DNN CNN DNN | CNN ::: ] ;:
D ME -8.87 -5.42 -9.52 | -8.05 200 l 200 L
MAE 9.84 6.95 10.15 8.85 w00 100
sp | ME 3.56 240 211 | 271 T caminant lass Eror  sut-Dominant Clas Eror
MAE 5.19 4.24 3.65 4.11 (€) CNN proposed by Casoxneau et al. (2020).
Heterogeneous pixels
b ME [-1346 -11.20 -1532 [ -13.3 - o
MAE | 18.61 19.34 18.69 | 17.57 200 200
sD ME 5.24 491 3.98 5.69 100 100
MAE | 13.94 14.77 12.20 | 13.16 T oaminant cassbror " SubDominant las v
ME and MAE for dominant (D)/sub-dominant (SD) classes. (&) DNN proposed by Caksoneau et al. (2020).

Error frequency per model.
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e Our model’s certainty is smaller than the ones
proposed in related works;

e Belarus: our models have managed to predict
the dominant class water in a more accurate
way;

e Our models had a better performance in
sub-dominant class prediction for Brazil (1)
and (2);

e Misprediction clusters in related works (SD)
may misguide conservation efforts and
undermine confidence in the maps.

Maps show class percentages without temporal data. CNN and

DNN represent CM models proposed by Carbonneau et al., 2020

[11]. Green pixels indicate water, red for other classes, and blue
for woodland/forest. Each pixel contains a mix of all classes.
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woltemp CNN wo/temp DNN w/temp CNN  w/temp DNN
DNN___ S1.S2.8Is _S1:8SIs _S1+S2.:3SIs S1+52+8Sls _Reference

e CNN-based results are smoother
than DNN-based results;

e We can notice major differences in
Belarus:
¢ Our models without temporal
data predicted the river more
accurately than the reference;
o Same relation between with and
without temporal data;

Maps representing a class percentage. CNN and DNN represent
class-membership models proposed by Carbonneau et al., 2020 [11]. Reference
is reference labels for test areas. Green pixels represent water red other, and
blue woodland and forest. Each pixel is represented by a mixture of all classes.
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Conclusions

e This work presents a novel two-stage approach that takes advantage of the synergy between
UAV and Satellite using a CNN-based class membership classifier calibrated by SegFormer
predictions made in UAV data;

e A new dataset combining UAV, Sentinel-1, and Sentinel-2 data collected from ten sites across
Europe and South America is introduced in this work;

e Compared to the reproduced works, our best combinations produced distinctly different and
superior results for the dominant class;

o We can predict class membership before it is dominant, aiding resource management in
proactive conservation;

e Besides being superior, our approach reduces human impact in the pipeline through a semantic
segmentation model;
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Conclusions

o The comparisons performed show that:
¢ Neural architecture search effectively addressed variations in the target variable, yielding a
superior result with statistically significant differences compared to Carbonneau et al. (2020)
[11];
¢ Incorporating S1 data, or S1, Sls, and spatial resolution can improve dominant class results;
¢ The inclusion of temporal data in the proposed model had a significant impact on the
performance particularly when using 3D CNNs (Spatial-temporal CNN);

e Limitations:
¢ Limited search space: search space for parameter optimization may have constrained the
model’'s performance potential;
¢ Cloud coverage: Products impacted by cloud coverage were not included in this study;
¢ Seasonal variability: We have not evaluated the solution’s potential to handle seasonal
variability.
e Future works:
¢ Increase search space;
¢ Evaluation of spatial-contextual models (Semantic segmentation step);
¢ Extend temporal analysis and investigate RNN alternatives for temporal patterns;
¢ Increase dataset aiming to evaluate solution’s potential in seasonal variability;
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Related works

e Two works were reproduced for comparison purposes;
e Furuya et al. proposed a comparison between multiple classifiers to map Riparian zones using
Sentinel-2 data:
o Evaluated Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), and
Normal-Gaussian Bayes (NB) to classify;
o Best results achieved with DT;
& Problems reported: Sparse vegetation, soil brightness, and types of vegetation covers that
were not included in the training dataset.
¢ Main differences: Synergy, sub-pixel classification, additional data types, and time-series.
e Carbonneau et al. proposed a comparison between fuzzy and crispy classifiers to classify fluvial
scenes using Sentinel-2 data calibrated by UAV:
¢ Evaluated CNNs and DNNs - fuzzy and crispy classifiers;
¢ Best results achieved with CNN - Fuzzy classifier;
© Problems reported: a high percentage of vegetation in wetted areas, limited dataset (regional
scale), and lack of significant seasonal variability in the data.
¢ Main differences: target variable - satellite model, additional data types, time-series, neural
architecture search.
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With Temporal Data - Dominant class

e Our bests: CNN and DNN based S1-S2-Sls;

e In 3 out of 6 cases, the improvement between Convolutional Neural Network | Deep Neural Network
. . . .. w/temp wo/temp witemp wo/temp
without and with temporal data is statistically A T = TOAT v TOAT « T oA T x
5|gn|f|cant (CN NS) - Combinations with S]_; St 8548 | 0.694 | 81.39 | 0.616 [ 72.52 | 0.384 | 72.05 | 0.384
52 9576 | 0915 | 95.44 | 0.908 | 95.15 | 0.903 | 95.22 | 0.904

° Temporal data does not Significantly enhance S1-SIs 96.13 | 0923 | 95.69 | 0.914 | 9555 | 0.911 | 95.60 | 0.912
S2-Sls 95.82 | 0.916 | 95.53 | 0.910 | 9537 | 0.907 | 95.37 | 0.907

dominant class accuracy for most combinations SISz | 96.14 | 0923 | 95.60 | 0.913 | 9538 | 0.908 | 95.46 | 0.909
using DNN-based architecture; S1-52-SIs | 96.18 | 0.924 | 95.76 | 0.915 | 95.62 | 0.912 | 9553 | 0911

. OA and k statistic for evaluated combinations with
e Our best models with temporal data are better and temporal resolution.

statistically different than related works.

FUuruYA et al. (2020) | CARBONNEAU et al. (2020) | Our best wo/temp | Our best w/temp

M RF C-1 CNN - S1-S2-SIs | CNN - S1-S2-SIs
OA 93.01 94.30 95.76 96.18
K 0.859 0.884 0.915 0.924

OA and k statistic for best results achieved for reference works, without temporal data, and with temporal data.
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With Temporal Data - Dominant class (Cntd.)

e Our best CNN: best performance in 6/10 locations;

e Without temporal data was superior in 3/10
. wo/temp CNN wo/temp DNN w/temp CNN  witemp DNN
locations. Two are among the smallest areas; SiLSo.Sie SiLSe S1.S2LSk SiLSo. sk Reterence

e Our CNN with temporal data underperforms
related works in only one case (Denmark);

e Belarus: Significant differences appear over or near
the river, with the best temporal-data combination
closest to the reference.

wo/temp w/temp
DNN - S1-SIs | CNN - S1-82-SIs | DNN - §1-52-SIs | CNN - S1-52-SIs
OA K OA K OA K OA K

Belarus 804 | 0.657 | 85.4 0.750 85.0 0.749 85.8 0.766
Brazil (1) | 97.2 | 0853 | 97.9 0.879 98.0 0.887 98.4 0.906
Brazil (3) | 97.2 | 0785 | 97.6 0.816 97.6 0.815 98.7 0.902
Brazil (4) | 99.5 | 0.944 | 99.8 0.976 99.5 0.944 99.7 0.967
Brazil (2) | 985 | 0929 [ 99.2 0.961 99.3 0.966 99.6 0.977
Denmark | 100.0 | 1.000 | 88.9 0.727 77.8 0.400 88.9 0.727

Croatia | 800 | 0.615 | 100.0 | 1000 | 800 | 0615 | 80.0 | 0545 Maps representing the dominant class: RF proposed by
Ukraine | 757 | 0599 | 82.0 | 0671 | 82.0 | 0.694 | 813 | 0.670 Furuya et al. (2020) [10], DNN proposed by Carbonneau
Russia (2) [ 100.0 [ 1.000 [ 100.0 [ 1.000 [ 100.0 | 1.000 [100.0 | 1.000 et al. (2020) [11], and our best (with and without

Russia (1) | 67.3 | 0.381 | 745 0.504 745 0.557 80.0 0.619

temporal data).
OA and k statistic for best combinations with and without temporal
data. Cells filled with dash (-) represent that the value is not applicable.
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e Considerable progress in terms of M for the dominant class with and without homogeneous
pixels;

e Small progress for the SD class in heterogeneous pixels classified by the CNN, but a worse
performance by the DNN model;

500 500
Paper CARBONNEAU ef al. (2020) | Our wo/temp [ our w/temp Em
Heterogeneous + homogeneous pixels E oo 100
Metric | DNN CNN DNN | CNN | DNN | CNN o .
b | ME | -887 -5.42 952 | 8.05 | 643 | 7.17 Sl ~es 00 03 10 -l 05 00 03 10
MAE | 9.84 6.95 10.15 | 8.85 | 7.40 | 7.97
sp |_ME_| 356 240 211 | 271 | 272 | 322 (2) Our CNN.
MAE | 5.19 1.24 3.65 | 411 | 408 | 452 s00 s00
Heterogeneous pixels g 400 400
b L_ME [-1346 -11.20 -1532 [ -13.30 [ -12.18 | -12.49 g0 g0
MAE | 18.61 19.34 18.69 | 17.57 | 17.30 | 16.78 E 200 e
oo | ME | 524 491 3.98 | 569 | 598 | 583 w“’:_ “':
MAE | 13.94 14.77 12.20 | 1316 | 13.21 | 1281 o 05 00 05 10 -1o o5 00 05 10
Error nant Ciass Error

ME and MAE for dominant (D)/sub-dominant (SD) classes.
(b) Our DNN.

Error frequency per model.
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Ground Truth - Target Variable

‘ Semantic Segmentation ‘ GT
e Performance for models with GT as input is worse Heterogeneous + homogeneous pixels
than SS, but differences are not statistically Metric | wotemp | w/temp | wo/temp | witemp
onifi ] b |_ME 8.05 717 657 | -436
significant; MAE | 885 7.97 7.61 5.48
e Optimization with only 2000 combinations, which sp | _ME 271 3.22 2,62 195
. . MAE | 411 4.52 1.08 3.53
is considerably smaller than the search space; o .
eterogeneous pixels
e Models with GT achieved the lowest MAE for D p | ME | -13.30 1249 1143 | -10.21
dSD ol . MAE | 17.57 16.78 1697 | 1618
an classes; sp |_ME 5.69 583 5.04 514
e Same pattern mentioned in the previous two slides: MAE | 13.16 12.81 1285 | 1340

temporal data has helped to improve the results. OA and k statistic for the best combinations with and
without temporal data, using both the output from SS

and GT as the target variable,

Semantic Segmentation Ground Truth

w/temp wo/temp w/temp wo/temp
OA K OA K OA K OA K
S$1-S2-SIs | 96.18 | 0.924 | 95.76 | 0.915 | 96.07 | 0.922 | 95.60 | 0.913

ME and MAE for dominant/sub-dominant classes.
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Appendix - Calibrated classifier - additional outputs

Ukraine

CNN_ DNN
DNN  CNN _s1,82,Sis_S1:8is_Reference
.ﬁ

Russia (1)

Denmark

g
K]
2
3
2
o

RF

Croatia

Additional maps representing a class percentage without
temporal data. CNN and DNN represent class-membership

Additional maps representing the dominant class: RF proposed models proposed by Carbonneau et al., 2020.

by Furuya et al. (2020), DNN proposed by Carbonneau et al.
(2020) and our best.
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Appendix - Calibrated classifier - additional outputs (Cntd.)

NN DNN (1) Reference

Denmark

. . . . Maps representing a class percentage without temporal data.
Ab(idll;tl:orzil r:tagls r(efé;soe)ntg’;gmth:rgs:sler:jarl\); C(I:a;i'os:e;:ogtojd CNN and DNN represent class-membership models proposed by
. (2 , . b L
(2020), and our best. (1) is without temporal CNN combination con(l:;;:g;z::a(usft:|§2_0+2%|5()1)(;) ‘?;Itv'\:ﬁl}::)EiTepsra;r(ale[’)\‘NN
(S1 + S2 + Sls), (2) is without temporal DNN combination (S1 binati S14 S| 3 A " | CNN P binati
+ Sls), (3) is with temporal CNN combination (S1 + S2 + Sls), combination (S1 + Sls), ( ) s with tempora com |'nat|on
and (4) is with temporal CNN combination (S1 + S2 + Sls) (S1+ 52+ Sks), and (4) is szth tesm|;oral CNN combination (S1
. + S2 4 Sls).
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Appendix - McNemar's test - wo.

temporal data

Furuya et al. (2020)

Carbonneau et al. (2020)

SVM DT RF NB C-1 | C2 |CM-1|CM-2

CNN-52 176.50 | 72.61 | 64.09 | 383.47 | 19.71 | 30.61 | 32.49 | 32.10

DNN-S2 162.28 | 73.74 | 65.36 | 373.43 | 26.32 | 21.66 | 35.30 | 16.91

CNN-S1-S2-VIs | 211.74 | 89.25 | 80.29 | 398.02 | 32.49 | 44.95 | 45.09 | 43.58

DNN-S1-SIs 187.46 | 101.19 | 87.29 | 402.75 | 36.53 | 33.60 | 49.51 | 29.11
McNemar's Test Results (x)

or related works against our best and our with Sentinel 2.

Furuya et al. (2020)

Carbonneau et al. (2020)

SVM DT RF NB C-1 C-2 CM-1 CM-2
CNN-S2 2.81E-40 | 1.58E-17 | 1.19E-15 | 2.18E-85 | 9.00E-06 | 3.15E-08 | 1.20E-08 | 1.46E-08
DNN-S2 7.01E-41 | 8.89E-18 | 6.23E-16 | 3.35E-83 | 4.93E-09 | 9.10E-08 | 1.07E-11 | 7.22E-07
CNN-S1-S2-VIs | 5.74E-48 | 3.47E-21 | 3.24E-19 | 1.49E-88 | 1.20E-08 | 2.02E-11 | 1.88E-11 | 4.06E-11
DNN-S1-SIs 2.46E-38 | 1.44E-20 | 8.02E-19 | 6.49E-89 | 7.87E-09 | 4.59E-07 | 1.15E-10 | 4.02E-06
McNemar's Test Results (p-values) for related works against our best and our with Sentinel 2.
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NN w/temp DNN w/temp

51 51-Sls 52 8152 51-52-SIs 52-SIs 51 51-SIs 52 8182 51-52-SIs 52-Sls
C-DNN 1.01E+02 | 2.23E+02 | 1LB6E+02 | 216E+02 | 204E+02 | 1.84E+02 | 6.75E+02 | 1.84E+02 | 1.53E+02 | 1.75E+02 | 1.85E+02 | 1.72E+02
C-CNN 2.99E+02 | 5.18E+01 | 3.22E+01 | 481E+01 | 4.24E+01 | 2.94E+01 | 9.92E+02 | 3.43E+01 | 1.94E+01 | 3.16E+01 | 4.02E+01 | 3.54E+01
CM-DNN | 2.71E+02 | 6.20E+01 | 461E+01 | 6.08E+01 [ 5.90E+01 | 4.24E+01 [ 9.56E+02 | 3.19E+01 | 186E+01 | 2.60E+01 | 3.44E+01 | 2.56E+01
CM-CNN | 2.83E+02 | 6.54E+01 | 451E+01 | 5.95E+01 | 5.50E+01 | 4.02E+01 | 957E+02 | 4.48E+01 | 3.03E+01 | 430E+01 | 5.16E+01 | 4.41E+01
SVM 2.99E+02 | 5.98E+01 | 440E+01 | 5.83E+01 | 5.68E+01 | 3.73E+01 | 9.91E+02 | 271E+01 | 149E+01 | 2.20E+01 | 297E+01 | 2.13E+01
" RF 2.20E+02 | 1.01E+02 | 8.09E+D1 | 983E+01 | 9.74E+01 | 7.34E+01 | 8 B1E+02 | 8.33E+01 | 6.84E+01 | 8.09E+01 | 8.81E+01 | 7.50E+01
NB 4.26E-01 | 447E+02 [ 411E+02 | 430E+02 | 441E+02 | 4.13E+02 | 3.42E+02 | 4.02E+02 | 3.88E+02 | 3.92E+02 | 411E+02 | 3.95E+02
DT 1.84E+02 | 1.12E+02 | 9.27E+01 | 1.13E+02 | 1.OBE+02 | 8.99E+01 | 8.36E+02 | 9.34E+01 | 7.59E+01 [ 852E+01 | 9.97E+01 | 8.44E+01

McNemar's Test Results () for combinations with against without temporal data.

CNN w/temp DNN witemp

51 S1-8Is s2 S1-52 | S1-5281s | S2-Sks 51 515k 52 5152 | S1-82-8s | S28Is
C-DNN_| 433667 | 6.10E-13 | 142608 | 401E-12 | 730E-11 | 577E-08 | 1.19E-217 | 484609 | 1.05B-05 | 1.856-08 | 231E-10 | 267609
CCNN | 755661 | 343E 15 | LIIE11 | 640E15 | 1566 14 | 744E 11 | 6.55E 210 | L67EO8 | 1.61E 05 | 348E 07 | 438E 09 | 4.14E07
TMDNN | 133663 | 6.00E-16 | 188E-11 | 122E-14 | 118E-13 | 2.34E-10 | 4.00E-210 | Z16E-11 | 3.62E-08 | 558E-11 | 683E-13 | 3.3E-11
CM-CNN | 4.66E-67 | LO4E-14 | 3.00E-11 | 2.20E-14 | 495E-14 | 1.02E-00 | 2.02E-217 | 190E-07 | 113E-04 | 2.76E-06 | 5.06E-08 | 4.02E406
SVM | 7.67E-24 | 249E-50 | 2.12E-42 | 6.93E-49 | 272E-46 | 7BIE-42 | 7.54E-149 | 7.24E42 | 5.74E-35 | 6.85E-40 | 4.900E-42 | 269E39
RF__ [ 954650 | 1.00E-23 | 243E-19 | 3.62F-23 | 5816-23 | 1056-17 | 1.35E-193 | 7.12E-20 | 1306-16 | 2476-19 | 6.09E-21 | 4 80E-18
NE | 5.14E01 | 3.58E 99 | 2.01E 01 | 180E 095 | 6.27E 98 | 8.66E 92 | 2.12E 76 | 1.83E 89 | 188E 86 | 3.88E 87 | 2.77E 91 | 6.51E 88
DT | 520642 | 3.00E-26 | 5.00E-22 | 1.08E-26 | 2556-25 | 248E-21 | 8.55E-184 | 434622 | 203E-18 | 2.66E-20 | 178E-23 | 402620

McNemar's Test Results (p-values) for combinations with against without temporal data.

1"
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Appendix - McNemar's test - wo. temporal data

SS/GT | w/temp | wo/temp SS/GT | witemp | woj/temp
witemp | 0.22 6.00 w/temp | 0.64 0.01
wo/temp 184 0.47 wo/temp 0.17 0.49

. . McN 's Test Results (p-val -GT inst SS as target
McNemar's Test Results (x) - GT against SS as target variable. cNemar's Test Results (p-values) agains as targe
variable
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