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The promise emerging reality of learning * e
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®

N
miniemize % Z LOSS(fe(mn)a yn)

n=1

(ERM)

. CE Wﬁﬂ £ éo

N [T
max‘igmize %Z [Z ' Reward (sn7t,7r9(sn7t))]
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Learning breakthroughs

T
1970s
(theoretical)
Learning theory

Classical learning theory [vapnik & Chervonenkis, TP'71; Valiant, CACM'84]:

“LLN”

mein ]i[ni\_]:lLoss(fg(mn),yn) _— mein E{Loss(fg(w),yﬂ

= e.g., linear functions, smooth functions (finite RKHS norm, bandlimited), NNss. ..
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The promise limitations of learning

The New York Times 2
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TECHNOLOGY

The Problem With
COVID-19 Artificial
Intelligence Solutions
and How to Fix Them

Science

Self-Driving Uber Car

t.  Kills Pedestrian in
Arizona, Where Robots
Roam

Read our COVID-19 research and news.

0O 00 0O 0o

RESEARCH ARTICLE
Dissecting racial bias in an

algorithm used to manage the
health of populations

How nonprofit and business leaders can equitably
and responsibly use Al systems in the fight
against COVID19.
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MIT Technology Review

Artificial intelligence / Machine learning

i
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Artificial intelligence 7L Machine learning
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THE APPEAL

The way we train Al is Facebook’s ad-
fundamentally flawed serving algorithm
The process used to build most of the discriminates by
machine-learning models we use

1S today can't tell if they will work in the Auiol“."'“s or gender and race

INEQUALITY

f v =

real world or not—and that's a
problem.

Evenif an advertiser is well-
intentioned, the algorithm still prefers
certain groups of people over others.

RETAIL
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Amazon scraps secret Al
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Improving ERM o

N
mgin % Z Loss (fe(ﬂln)7 yn>
n=1

[Xie & Yuille, ICLR’'20; Guo et al., CVPR'20; Finzi et al., ICML20; Li et al., ICRL21;
Lu et al., Nature Mach. Intel.21; Raissi et al., J. Comp. Phys.19;...]




Improving ERM

N N
mgin % ; Loss (fg (z,), yn) mein % ,;1 Loss (fe(%z)a yn)

[Xie & VYuille, ICLR'20; Guo et al., CVPR'20; Finzi et al., ICML20; Li et al., ICRL21; [Kamiran & Calders, KIS'12; Feldman et al., SIGKDD'15; Calmon et al., NeurlPS'17;
Lu et al., Nature Mach. Intel.21; Raissi et al., J. Comp. Phys.19;...] Chen et al., ICML20; Mller & Hutter, ICCV'21; Zheng et al., ICRL22; ...]




Improving ERM

N N
mgin % ; Loss (fg (z,), yn) mein % ,;1 Loss (fe(%z)a yn)

[Xie & Yuille, ICLR’'20; Guo et al., CVPR'20; Finzi et al., ICML20; Li et al., ICRL21;

[Kamiran & Calders, KIS'12; Feldman et al., SIGKDD'15; Calmon et al., NeurlPS'17;
Lu et al., Nature Mach. Intel.21; Raissi et al., J. Comp. Phys.19;...]

Chen et al., ICML20; Mller & Hutter, ICCV'21; Zheng et al., ICRL22; ...]

N
min % > Loss (fe(wn), yn)
n=1

[Goodfellow et al., ICLR'15; Arjovsky et al., ICML17; Madry et al., ICLR'18;
Zhang et al., ICML19; Raissi et al., J. Comp. Phys.19; Krishnan et al., NeurlPS'20; .. .]




Improving ERM

1 1
mgin N;L083<fe($n)7yn) me. anl OSS(fB(wn)ayn)

[Xie & VYuille, ICLR'20; Guo et al., CVPR'20; Finzi et al., ICML20; Li et al., ICRL21; [Kamiran & Calders, KIS'12; Feldman et al., SIGKDD'15; Calmon et al., NeurlPS'17;
Lu et al., Nature Mach. Intel.21; Raissi et al., J. Comp. Phys.19;...] Chen et al., ICML20; Mller & Hutter, ICCV'21; Zheng et al., ICRL22; ...]

N N
min % nz::l Loss (fg(:l:n), yn) min % nz::l Loss (fe(ﬂcn), yn)

[Goodfellow et al., ICLR'15; Arjovsky et al., ICML17; Madry et al., ICLR’18; [Helmbold & Long, JMLR’15; Mianjy et al., ICML18; Tashiro et al., NeurlPS'20;
Zhang et al., ICML19; Raissi et al., J. Comp. Phys.19; Krishnan et al., NeurlPS'20; .. .] Li et al., AISTATS'20; Lin et al., ICML20; Foret et al., ICRL21 ]




A different paradigm...

Learning is doing exactly
what we asked for.
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Learning is doing exactly
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A different paradigm... .

Learning is doing exactly
what we asked for.

INISSE

ARDS I8

How can Al learn to do what we want?
Constrained learning

I



Claims

Constrained learning is the right way to learn under requirements

Constrained learning is hard.. .

... but possible
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Claims

Constrained learning is the right way to learn under requirements



Robust image recognition

Problem
Learn an image classifier

Cello

CIFAR-10
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Problem
Learn an image classifier
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Robust image recognition

Problem
Learn an image classifier that is robust to input perturbations

Cello
CIFAR-10
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Adversarial training .

Problem
Learn an image classifier that is robust to input perturbations

» Adversarial training (e.g., [Szegedy et al., ICLR'14; Goodfellow et al., ICLR'15; Madry et al., ICLR'18])

N N
1 1
min N;Loss(fg(mn),yn) —— min N; [lglli);ELoss(fg(mn +6),yn)]




Adversarial training .

Problem
Learn an image classifier that is robust to input perturbations

» Adversarial training (e.g., [Szegedy et al., ICLR'14; Goodfellow et al., ICLR'15; Madry et al., ICLR'18])

N N
1 1
min N;Loss(fg(mn),yn) —— min N; [lglli);ELoss(fg(mn +6),yn)]

ﬂ ~ gradient ascent

[Szegedy et al., ICLR'14; Goodfellow et al.,
ICLR’15; Madry et al., ICLR'18; ...]




Adversarial training .

.
Problem &/
Learn an image classifier that is robust to input perturbations
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Adversarial training +© Cein g
[ .

Problem .

Learn an image classifier that is robust to input perturbations ®

* Adversarial training (e.g., [zhang et al., ICML19))

N

mein %ZLOSS(fg(mn),yn) E—— ml Z [ max Loss(fg(:cn +9),y )]

SN/ -

N
meln — Z LOSS fg(a:n) yn) + )\|: Iﬁlax Loss (fe(:l:n +4), yn)] & 5

n=1



Adversarial training

Problem

Learn an image classifier that is robust to input perturbations

CIFAR-10

Nominal accuracy (%)
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Adversarial accuracy (%)
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Penalty-based methods .

Problem
Learn an image classifier that is robust to input perturbations

N
mein Jbz:lLoss(fg(wn),yn)—f—)\ |\§ﬁliX§eLoss(f9(mn+6)’yn)

© No straightforward relation between \ and adversarial loss
© ) depends on the values of the losses (dataset, model, performance measure)

© Requirement generalization



Constrained learning for robustness .

Problem
Learn an image classifier that is robust to input perturbations

min Nominal loss
]

subject to  Adversarial loss < ¢

[C. and Ribeiro, NeurlPS'20; Robey*, C.*, Pappas, Hassani, and Ribeiro, NeurlPS'21; C., Paternain, Calvo-Fullana, and Ribeiro, IEEE TIT'23]



Constrained learning for robustness .

Problem
Learn an image classifier that is robust to input perturbations

N
min % Z Loss(fo(zn), yn)
n=1

subject to  Adversarial loss < ¢

[C. and Ribeiro, NeurlPS'20; Robey*, C.*, Pappas, Hassani, and Ribeiro, NeurlPS'21; C., Paternain, Calvo-Fullana, and Ribeiro, IEEE TIT'23]
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Constrained learning for robustness .

Problem
Learn an image classifier that is robust to input perturbations

2|~

min
0

N
ZLoss(fg(mn).,yn)
n=1

N
1
subject to — max Loss T, +90),yn)| <c
j ~ nz::l {HMWQ (fo( ) Yn)

@ More natural: requirement is a constraint, not a cost

@ Decouple performance and requirements

[C. and Ribeiro, NeurlPS'20; Robey*, C.*, Pappas, Hassani, and Ribeiro, NeurlPS'21; C., Paternain, Calvo-Fullana, and Ribeiro, IEEE TIT'23]



Constrained learning for robustness

Problem
Learn an image classifier that is robust to input perturbations

max Loss Ty +0),Yn
1]l <e (o )9m)

[Robey*, C.*, Pappas, Hassani, and Ribeiro, NeurlPS'21]
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Constrained learning for robustness

Problem e
Learn an image classifier that is robust to input perturbations
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[Robey*, C.*, Pappas, Hassani, and Ribeiro, NeurlPS'21]



Constrained learning for robustness

Problem

Learn an image classifier that is robust to input perturbations
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82

86 88
Clean accuracy

—e— TRADES
DALE

90 92

\e @,

o, ‘ ﬁ
°.
@
1
.



Fair learning

Problem °
Predict whether an individual will recidivate at the same rate across races

BN African-American
W Caucasian
Population - mm Hispanic
B Other
minimize Prediction error
Unconstrained _|
. 68 . L . .
(Ace: 68%) subject to  Prediction rate disparity (Race) < c
Constrained _|
(Acc.: 67%)
T T T T
20 30 40 50 60

Recidivism rate (%)

[C., Paternain, Calvo-Fullana, Ribeiro, ICASSP’20 (best student paper); C. and Ribeiro, NeurlPS'20; C., Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23] 18



Learning to solve PDEs o

Problem °
Obtain (weak) solutions for a parametric family of boundary value problems

1.0

(penalty methods)  (constrained learning)
08 L W PINN (4k) W SCL (5k)
' [ PINN (7k)

B PINN (30k)

0.6 1 minimize Boundary condition error

04 ] subject to  Weak formulation error <'¢, V(x,t)

Relative L, error (%)

0.2

0.0

[Moro and C., ICLR’25] 19



Wireless resource allocation ‘o

Problem
Allocate the least transmit power to m device pairs to achieve a communication rate

minimize Total power

subject to Communicate rate (T;) > ¢;

[Eisen, Zhang, C., Lee, Ribeiro, IEEE TSP’19]



. . ® @ o, B
Safe reinforcement learning o *
A
[ ¢
Problem °
Learn a control policy that navigates the environment effectively and safely ®

Speed: 3.0x

maximize Task reward

subject to P (Colliding with obstacles) < ¢§

[Paternain, Calvo-Fullana, Chamon, Ribeiro, IEEE TAC'23] 21



Claims ‘o

Constrained learning is hard.. .




(Un)constrained learning o,

N
px
P = min Z fo(xn), n)
n=1
+ ¢, g are bounded, functions
° feisa parametrization [e.g., logistic classifier, (G)(C)NN]

* (®n,yn) ~ D, (Tm, Ym) ~ A (id.d.)

[C. and Ribeiro, NeurlPS'20; Robey*, C.*, Pappas, Hassani, and Ribeiro, NeurlPS'21; C., Paternain, Calvo-Fullana, and Ribeiro, IEEE TIT'23] 23



(Un)constrained learning .

P*:mein ! Z( fo(xn), n)

+ ¢, g are bounded, functions
° feisa parametrization [e.g., logistic classifier, (G)(C)NN]

o (n,Yn) ~ D, (@m, Ym) ~ A (ii.d.)

[C. and Ribeiro, NeurlPS'20; Robey*, C.*, Pappas, Hassani, and Ribeiro, NeurlPS'21; C., Paternain, Calvo-Fullana, and Ribeiro, IEEE TIT'23]




(Un)constrained learning o,

P*zmein 125 feiBn n)

+ ¢, g are bounded, functions

° feisa parametrization [e.g., logistic classifier, (G)(C)NN]

* (®n,yn) ~ D, (Tm, Ym) ~ A (id.d.)

[C. and Ribeiro, NeurlPS'20; Robey*, C.*, Pappas, Hassani, and Ribeiro, NeurlPS'21; C., Paternain, Calvo-Fullana, and Ribeiro, IEEE TIT'23] 23



Constrained learning .

N
D* . 1 * .
P = Hgn N Zg(fe(m'n)a yn) 5 P = meln E(m,y)N'D |:£(f9($), y):|
n=1 H
LM
subject to N g(fg(ccm), ym) <ec subject to ]E(m,y)wg({g(fg(w), y)} <ec
m=1
Challenges

© Statistical: does the solution of the constrained empirical problem generalize?

[C. and Ribeiro, NeurlPS’20; Robey*, C.*, Pappas, Hassani, and Ribeiro, NeurlPS'21; C., Paternain, Calvo-Fullana, and Ribeiro, IEEE TIT'23]
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Constrained learning .

“LLN”

P* = mein E(m,y)NDV(fe(m)’y)}

N
P 9 Z fean

Challenges

© Statistical: does the solution of the constrained empirical problem generalize?

[C. and Ribeiro, NeurlPS’20; Robey*, C.*, Pappas, Hassani, and Ribeiro, NeurlPS'21; C., Paternain, Calvo-Fullana, and Ribeiro, IEEE TIT'23]
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Constrained learning —
P N Z_: f9 m'n n 2 P* - mein ]E(m,y)~©|:€(f9(m)7y):|

subject to N Z fe (Bm m) <c SUbjeCt to E(m,y)wﬂ{g(fo(wL y)i| <c
Challenges

© Statistical: does the solution of the constrained empirical problem generalize?

[C. and Ribeiro, NeurlPS’20; Robey*, C.*, Pappas, Hassani, and Ribeiro, NeurlPS'21; C., Paternain, Calvo-Fullana, and Ribeiro, IEEE TIT'23]



Constrained learning .

N
P N Z fo(@n),
M
subject to ~ Z fo(xm) m) <c
Challenges

© Statistical: does the solution of the constrained empirical problem generalize?

© Computational: can we solve the constrained empirical problem?

[C. and Ribeiro, NeurlPS'20; Robey*, C.*, Pappas, Hassani, and Ribeiro, NeurlPS'21; C., Paternain, Calvo-Fullana, and Ribeiro, IEEE TIT'23]



Constrained learning .

N
. 1
P* _mln Nz:f fe wn yn
) M
subject to i g fe(ivm),ym) <c
m=1

|

N M
mel Nz f@ a3nayn 1 Zg f9 wm7ym)
n=1 m:l

Challenges
© Statistical: does the solution of the constrained empirical problem generalize?

© Computational: can we solve the constrained empirical problem?

[C. and Ribeiro, NeurlPS’20; Robey*, C.*, Pappas, Hassani, and Ribeiro, NeurlPS'21; C., Paternain, Calvo-Fullana, and Ribeiro, IEEE TIT'23]
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Constrained learning —
P N Z_: f9 m'n n 2 P* - mein ]E(m,y)~©|:€(f9(m)7y):|

subject to N Z fe (Bm m) <c SUbjeCt to E(m,y)wﬂ{g(fo(wL y)i| <c
Challenges

© Statistical: does the solution of the constrained empirical problem generalize?

[C. and Ribeiro, NeurlPS’20; Robey*, C.*, Pappas, Hassani, and Ribeiro, NeurlPS'21; C., Paternain, Calvo-Fullana, and Ribeiro, IEEE TIT'23]



What classical learning theory says?

N
mein %ZLOSS(fg(a}nLyn) e N mein E{Loss(fg(w),y)]

n=1

@ fo is probably approximately correct (PAC) learnable
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What classical learning theory says?

N
mein %ZLOSS(fg(a}nLyn) e N mein E{Loss(fg(w),y)]

n=1

@ fo is probably approximately correct (PAC) learnable

© Constraints?



What’s in a solution? o

Definition (PAC learnability)

fo is a probably approximately correct (PAC) learnable if
obtain fg+ from samples such that, with prob. 1 — 4,

* near-optimal
P = Eaupn [0(for(@),y)| <

[Rostamizadeh, Talwalkar, Mohri. Foundations of machine learning, 2012]; [Ben-David, Shalev-Shwartz. Understanding machine learning. .., 2014]



What’s in a solution?

Definition (PACC learnability)
fo is a probably approximately correct constrained (PACC) learnable if

we can obtain fg+ from samples such that, with prob. 1 — 9,

* near-optimal
‘P* —E@y~o [f(fm(m):y)} ‘ <e

* approximately feasible

x

By

E (2,5~ {g(fm (2), y)} <cte

[Chamon and Ribeiro, NeurlPS'20; Chamon et al., IEEE TIT'23]

X x




. . . . Lo
When is constrained learning possible? = .

N
1
O(fo(@n), yn) P* —min E [z ]
9 ; meln (z,y)~D (f@(x)ay)
N /
. 1 .
subject to i Zlg fe (zm) ym < subject to E(g )~ [g(fe(w),y)} <

o

Proposition

fo is PAC learnable = fg is PACC learnable

[Chamon and Ribeiro, NeurlPS'20; Chamon et al., IEEE TIT'23]
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Constrained learning .

N
P N Z fo(@n),
M
subject to )i Z fg (zm) m) <ec
Challenges

© Computational: can we solve the constrained empirical problem?

[C. and Ribeiro, NeurlPS'20; Robey*, C.*, Pappas, Hassani, and Ribeiro, NeurlPS'21; C., Paternain, Calvo-Fullana, and Ribeiro, IEEE TIT'23]
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Duality .

N N
Z fo(xn) yn subject to % Zg fe (zm), ym) <

1 =




Duality

N
Z fo(zn) yn subject to

!

N
D* = n)yUn) + A
rilgéc min Z: fe ili ,y "‘ [

1

1

N
Zg fo(Tm), Ym Sc
m:l

N
ZQ f9 a’m 7ym _C:|
m=1



Duality C

N N
Z fo(Tn), yn subjectt 1 Zg fo(xzm), Ym S c
n=1 m:l

I

N N
* . 1
D” = max meln E (fo(xn), yn) —I—)\[ E g (fo(@m), ym) —c}
n=1 m=1

A>0

« Ingeneral, D* < P*

« Butin some cases, D* = P* (strong duality) [e.g., convex optimization]



Duality ®

N N
1

g fo (zn) yn subject to E g fe (Tm), Ym S c

n=1 m:l

!

N N

. 1

D* = max m1n E (fo(xn), yn) -l-)\[ E g (fe(xm), ym) _C}
- p—

A>0

« Ingeneral, D* < P*




Non-convex variational duality

Convex optimization: Primal <«— Dual

Non-convey, finite dimensional optimization: Primal <—— Dual



Non-convex variational duality

Convex optimization: Primal <«— Dual

Non-convex, infinite dimensional optimization:

[Chamon et al., IEEE TSP’20]

Primal <«— Dual



Sparse logistic regression

N
I S s

n=1

P
5:t0 [Bllg = > 160 # 0] <k
t=1

Discrete, non-convex
[Chen et al., JMLR'19]: NP-hard



Sparse logistic regression

N
S D (R
n=1

p
s.t0 6]l = Y L[ #0] <k
t=1

Discrete, non-convex
[Chen et al., JMLR'19]: NP-hard

N
min — Z:llog [1 + exp (yn : /Q(t)mn(t)dt)

s.to 10, = /]I[Q(t) £0]dt < S

COﬂ“I’lUOUS, non-convex
[Chamon et al., IEEE TSP'20]: tractable

—



Sparse logistic regression

T
0 x
ocRrp "

Zn[aﬁé()]

Discrete
[Chen et al., JMLR'19]: NP-hard

[
min / 0(t)zn (t)dt
/11 [0(t) # 0] dt

Continuous
[Chamon et al., IEEE TSP'20]: tractable



How to learn under constraints? ‘.

N
min > ¢(fo(@n), yn)

n=1

> g(fo(@m),ym) <c

7
\ e

2=

subject to

N

N
. 1
r}\lg(}){ meln E (fo(xn),yn) +)\[ E g (fo(®m),ym) —
n=1 m=1

@.

[C., Paternain, Calvo-Fullana, and Ribeiro, ICASSP’20 (best student paper); C. and Ribeiro, NeurlPS'20; C, Paternain, Calvo-Fullana, and Ribeiro, IEEE TIT'23] 34



How to learn under constraints? £

[C.,

mein Ez,y)~® [f(fe (x), y)}

subject to E(z y)~a {g(fe(w),y)} <c

N
1
i ’VL n A
T§§m9m Z feil? y +[

Paternain, Calvo-Fullana, and Ribeiro, ICASSP’20 (best student paper); C. and Ribeiro, NeurlPS’20; C, Paternain, Calvo-Fullana, and Ribeiro, IEEE TIT'23]

@.

34



Dual (near-)PACC learning e

@
o
.?:(\)

Theorem
Let f be v-universal, i.e., for each 0+, 62, and v € [0, 1] there exists @ such that ®

E[[1fo (@) + (1 =) fos(@) = fo(@)]| <v ®
[{fo} is a good covering of conv({ fe})]

[Chamon and Ribeiro, NeurlPS’20; Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23; Elenter, Chamon, Ribeiro, ICLR'24] 35



Dual (near-)PACC learning .

Theorem

Then D* is a (near-)PACC learner, i.e., for all (8, AT) that achieve D*, with probability 1 — 4,

A ~ 1
Near-optimal: |P* - D*} <0 <z/ +—
VN

Approximately feasible: E[g (fef(él)), y)] <c+ o (1/ + \/lﬁ>

(¢ strongly convex and g convex)

[Chamon and Ribeiro, NeurlPS’20; Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23; Elenter, Chamon, Ribeiro, ICLR'24]
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Dual (near-)PACC learning o9

Theorem
Let f be v-universal with VC dimension dyvc < oo, ¢ strongly convex, and g convex. Then, forisa
(near-)PACC solution of (P-CSL) for all (8", AT) that achieve D*, i.e., with probability at least 1 — &,

P — Ez,y~o [é(fm(fll)yy)} ‘ =

E [9(for(@).) | <

Sources of error

[Chamon and Ribeiro, NeurlPS’20; Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23; Elenter, Chamon, Ribeiro, ICLR'24]
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Dual (near-)PACC learning o,

Theorem
Let f be v-universal with VC dimension dyvc < oo, ¢ strongly convex, and g convex. Then, forisa
(near-)PACC solution of (P-CSL) for all (8", AT) that achieve D*, i.e., with probability at least 1 — &,

P* —E(g o [é(fm (x), y)} ‘ < €0

E [g(fm(m)yy)} <c+ Veéo

€p = 14

Sources of error
parametrization richness ()

[Chamon and Ribeiro, NeurlPS’20; Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23; Elenter, Chamon, Ribeiro, ICLR'24]
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Theorem
Let f be v-universal with VC dimension dyvc < oo, ¢ strongly convex, and g convex. Then, forisa
(near-)PACC solution of (P-CSL) for all (8", AT) that achieve D*, i.e., with probability at least 1 — &,

P" = E@y~o {f(fm(m)yy)} ‘ < €0+ €
E{g(fm(ﬂi),y)} <c+ Veo +e
dvec
€0 = 14 €=

Sources of error
parametrization richness ()
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Dual (near-)PACC learning o,

Theorem
Let f be v-universal with VC dimension dyvc < oo, ¢ strongly convex, and g convex. Then, forisa
(near-)PACC solution of (P-CSL) for all (8", AT) that achieve D*, i.e., with probability at least 1 — &,

‘P*_E(myy%@ {f(fm(m)yy)” < €0+ ¢

E{g(fm(ﬂ)),y)} <c+ Veo +e

Sources of error
parametrization richness () sample size (V)

[Chamon and Ribeiro, NeurlPS’20; Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23; Elenter, Chamon, Ribeiro, ICLR'24]
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Dual (near-)PACC learning o9

Theorem
Let f be v-universal with VC dimension dyvc < oo, ¢ strongly convex, and g convex. Then, forisa
(near-)PACC solution of (P-CSL) for all (8", AT) that achieve D*, i.e., with probability at least 1 — &,

‘P* CEgyen {e(f,,f (), y)} ‘ < (14 A)(e0 +¢)

E [g(fm(m),y)} e+ (L+AP2 (0 e +e)

1 N jdve N “ -
o emnfk (UYL
Sources of error
parametrization richness (v) sample size (N) requirements difficulty (A*)

[Chamon and Ribeiro, NeurlPS’20; Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23; Elenter, Chamon, Ribeiro, ICLR'24]

o @l  ©
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Dual learning trade-offs

Sample size
* Unconstrained learning

parametrization x sample size

[Chamon and Ribeiro, NeurlPS’20; Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23; Elenter, Chamon, Ribeiro, ICLR'24]

Parametrization

o @l  ©

el

@.



Dual learning trade-offs

* Unconstrained learning

parametrization x sample size

+ Constrained learning

parametrization x sample size x requirements

Sample size

Parametrization

Requirements
difficulty

[Chamon and Ribeiro, NeurlPS’20; Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23; Elenter, Chamon, Ribeiro, ICLR'24]
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When is constrained learning possible?

Corollary

fo is PAC learnable ~* fy is PACC learnable

Constrained learning is essentially as hard as unconstrained learning

[Chamon and Ribeiro, NeurlPS’20; Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23; Elenter, Chamon, Ribeiro, ICLR'24]



When is constrained learning possible?

Corollary

Uniform
.7 convergence

0-1loss
‘\
\

[Chamon and Ribeiro, NeurlPS’20; Chamon, Paternain, Calvo-Fullana, Ribeiro, IEEE TIT'23; Elenter, Chamon, Ribeiro, ICLR'24]
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Dual learning algorithm

7 * .
D™ = max min
A>0 OcRP

&9,
~a
o.
@

@.



Dual learning algorithm
* Minimize the primal (= ERM)

B6cRP

N
ot ¢ argmin % Z {E (fo(xn),yn) + Ag (fo(Tn),yn)

n=1

N N
min ]irz_;@(fe(mn),yn)—F)\ ]i,z_:lg(fe(mm),yw»

6cRP



“e©
*®

Dual learning algorithm C

@

* Minimize the primal (= ERM)

9+ ~ 0 — 77V9 |:€(f9(a:n)>yn) + )\g(fe(m'n)ayn):l: n = 1727 e

[Ge et al., ICLR’18; Soltanolkotabi et al., IEEE TIT'18; Mei et al., PNAS'18; Kawaguchi et al., AISTATS'20. ..

min
6ERP

”MZ

fe mn n +)\ Jbz_:lg(fe(mm),ym)

]



Dual learning algorithm C

* Update the dual

AT = [A—Fﬁ(é Zg(fg+(mm),ym) —c)]

+

N o WM .‘_;\O

max )\
A>0

@.



A (near-)PACC learner .

Theorem ®
Suppose 0 is a p-approximate solution of the regularized ERM:

0" ~ argmin % Z (é (fo(n), yn) + Mg (fo(xn), yn) )

RP
oc j—

the iterates (0, A")) are such that 0

o

(

Then, after T’ dual iterations with step size n ,
[

’P* - L(G(T),/\<T)>‘ <(2+A)eo+€)+p

with probability 1 — ¢ over sample sets.

[Chamon et al., IEEE TIT'23]
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In practice... o, . 8
oo
1: Initialize: Bg, Ao
2 fort=1,...,T
3 P10
4 forn=1,...,N sGD
5: Brnt1 < Bn —n6Vs [f(fﬁn (wn), yn) + )xtflg(fﬁn (Cﬁn), yn)]
6: end
7 O By
N
8: At = [Atl +77>\< Z fet L) n — c>‘| Dual update
9: end m +
10: Output: @1, Ar
O PyTorch

https://github.com/1fochamon/csl



e ©

Penalty-based vs. dual learning - @
[ J
Penalty-based learning Dual learning
6" ¢ argmin Loss(6) + X - Penalty(8) 0" € argmin Loss(8) + X - Penalty(6)
A= [)\ + n(Penalty(GT) ~ c)}
.

e Parameter: \ (data-dependent) « Parameter: ¢ (requirement-dependent)

* Generalizes with respect to Loss 4+ APenalty * Generalizes with respect to Loss
and Penalty < ¢




Robust image recognition .

200
107" 5 : ®
E i o
] | 150 - A 5 G
1072 4 1 ° £
@ E 2 50
£ | 3 ?
2 103 5 I S 100 )
€ E | = < ‘
5 ] S i
= ] 1 0
10 o I ° 2
E : 50 <
(e
] i [
1075 3
T T .! T — T 0 T T T
10t 100 0 500 1000 1500
Adversarial loss Iteration

[C., Paternain, Calvo-Fullana, and Ribeiro, IEEE TIT'23] 44
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Robust image recognition

200
1071 5 : ®
3 i O
] i 4 ‘@ (:
—2 | 150 =X
w0 10 : E I [} £
8 ] ! = S ?
= 1 I 2 o
2 103 - I S 100 ~ @
E E = 2
s v s 2
10~ 4 | 50 '%
E : <
] (e
] i ®
1075 3
— e} — ] 0 ! ! !
101 100 0 500 1000 1500
Adversarial loss Iteration

[C., Paternain, Calvo-Fullana, and Ribeiro, IEEE TIT'23] 44



Robust image recognition .
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Empirical observations: [Zhang et al., ICML20; Sitawarin, ArXiv'20] 44



Robust image recognition C

100 T T
[ Unconstrained (random init.)
B Unconstrained (warm init.)
80 - — .
£ 60
>
1%}
e
3
S 40
<<
20 1 l
0- l l

0.0l 0.10 0.18
Perturbation magnitude

[C., Paternain, Calvo-Fullana, and Ribeiro, IEEE TIT'23] 45



Robust image recognition C

100 T T
[ Unconstrained (random init.)
B Unconstrained (warm init.)
80 —— B Constrained 5
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e
3
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0.00 0.10 0.18 0.27
Perturbation magnitude

[C., Paternain, Calvo-Fullana, and Ribeiro, IEEE TIT'23] 45



Claims

* Constrained learning is the right tool to learn under requirements

» Constrained learning is hard...

* ...but possible



Claims ‘o

* Constrained learning is a good tool to learn under requirements °

Constrained learning imposes requirements during training that generalize at test time, e.g.,
= robustness [CR, NeurlPS'20; R*C*PH, NeurlPS'21; RCPH, ICML22 (spotlight); CPCR, IEEE TIT'23]
m  fairness [CPCR, ICASSP'20 (best student paper); CR, NeurlPS'20; CPCR, IEEE TIT'23]

invariance and data augmentation [+cr, icvr2s)

(manifold) smoothness [ccHvr, IcvL2s)

resilience [HRc, NeurlPs23)

safe RL [PcCR, NeurlPS'19; PCCR, IEEE TAC'23; CPCR, IEEE TAC'24]

learning to solve PDEs [vic, icLr25]

» Constrained learning is hard...

* ...but possible
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* ...but possible
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Constrained learning imposes requirements during training that generalize at test time, e.g.,
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» Constrained learning is hard...
Constrained, non-convex, statistical optimization problem

* ...but possible
We can learn under requirements (essentially) whenever we can learn at all




Claims ‘o

* Constrained learning is a good tool to learn under requirements °

Constrained learning imposes requirements during training that generalize at test time, e.g.,
= robustness [CR, NeurlPS'20; R*C*PH, NeurlPS'21; RCPH, ICML22 (spotlight); CPCR, IEEE TIT'23]
= fairness [CPCR, ICASSP’20 (best student paper); CR, NeurlPS'20; CPCR, IEEE TIT'23]
= invariance and data augmentation [Hcr, icvi23)
= (manifold) smoothness [ccHvr, icvL23)
m resilience [HRe, NeurlPs23]
= safe RL [PCCR, NeurlPS'19; PCCR, IEEE TAC'23; CPCR, IEEE TAC'24]
= |earning to solve PDEs jvic, icLr25)

» Constrained learning is hard...
Constrained, non-convex, statistical optimization problem

* ...but possible. How?

We can learn under requirements (essentially) whenever we can learn at all
by solving (penalized) ERM problems ®
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